Как сделать гидравлический расчет системы отопления – теория и практика

Содержание:

Гидравлические вычисления
Расход теплоносителя
Наглядный пример
Скорость потока и расчет сопротивления
Потери напора
Специфика выбора основной ветви в двухтрубной системе
Итоги
Видео

Задачей гидравлического расчета системы отопления является нахождение точных значений диаметра трубопровода и мощности насоса. Эти параметры обязательны для организации эффективного обогрева помещений.

Гидравлические вычисления

Основными гидравлическими показателями, необходимыми для проведения расчетов, являются:

  • Скорость циркуляции теплоносителя внутри контура.
  • Уровень сопротивляемости труб и арматуры.
  • Объем воды.

Каждый из этих показателей напрямую связан с остальными: любое изменение какого-то параметра влечет за собой перемену общей картины. К примеру, уменьшение диаметра провоцирует не только убыстрение движения теплоносителя: увеличивается также и гидравлическое сопротивление. И наоборот, при увеличении сечения труб происходит уменьшение скорости и сопротивления. Учитывая эту тенденцию, можно без труда добиться сокращения расходов на материалы, улучшения эффективности и надежности обогрева жилища.


Система обогрева состоит из четырех главных элементов:

  1. Регулирующая (термоклапаны, термовентили) и запорная арматура (шаровые краны, вентиля).
  2. Трубопровод.
  3. Батареи водяного отопления.
  4. Источник тепловой энергии (котельное оборудование).

Для этих элементов характерно наличие индивидуальных параметров, требующих учета при организации отопления. Обычно фирмами-изготовителями на выпускаемом оборудовании указывается информация о характеристиках: это касается как обычных отопительных радиаторов, так и любых расходных материалов. Для упрощения расчета были разработаны специальные таблицы и диаграммы. К примеру, для облегчения подбора полипропиленовых труб они сопровождаются документацией со специальными номограммами для гидравлических расчетов.

Расход теплоносителя

Без труда можно заметить, что расход и количество нагретой воды в котле непосредственно связаны между собой. На объемы подготовленного теплоносителя напрямую влияет тепловая нагрузка на котел. Она же, в свою очередь, зависит от того, сколько тепла утекает из помещения на улицу. Его необходимо компенсировать обогревом. Расчет гидравлики позволяет понять, сколько теплоносителя расходуется на отдельных пролетах контура. Каждый из них обладает постоянным сечением и расходом.

Наглядный пример

Для проведения вычислений можно взять контур, состоящий из двух колец отопления (первое немного длиннее второго). Каждое из них лучше разбить на отрезки, пронумеровав от точки с наибольшим расходом. Продолжительность первого участка от котла определяется до момента перемены расхода теплоносителя. Обычно такой точкой выступает ближайший стояк или радиатор. Гидравлический расчет отопления проводится одновременно для подающей и обратной трубы, во избежание перебоев с циркуляцией.

Для расчета расхода теплоносителя используется формула: G = Q / (c * (t2 - t1)). Здесь G ― расход воды в системе (кг/сек); Q ― тепло (Вт), необходимое для восполнения теплопотерь; t2 ― температура, до которой необходимо довести теплоноситель; t1 ― температура остывшей воды; С ― удельная теплоемкость воды (постоянная величина, равная 4,2 кДж/(кг•°С).


Обладая информацией о расходах, при помощи специальных справочников несложно определить сечение отопительных труб. В тех же источниках, наряду с диаметром, содержаться указания на скорость потока и потери давления. Также важно понимать, что по мере движения по стоякам сечение труб постепенно уменьшается. К примеру, диаметр магистральной трубы может быть 32 мм. На следующем участке переходят на 24 мм, а еще дальше – 16 мм. Резких перепадов сечения лучше не допускать.

Скорость потока и расчет сопротивления


Совет: Используйте наши строительные калькуляторы онлайн, и вы выполните расчеты строительных материалов или конструкций быстро и точно.

Нежелательно, чтобы теплоноситель двигался по трубам медленнее, чем 0,2 – 0,3 м/с. Это грозит образованием воздушных пробок, за счет выделения газа из воды. Как результат, эффективность системы, как минимум, снизится. Что касается верхнего порога скорости, то он рекомендован на уровне 0,7 – 1,5 м/с.

При его превышении теплоноситель будет сильно шуметь. Рекомендованный показатель, на который необходимо ориентироваться при расчете скорости теплоносителя ― 0,5 – 0,7 м/с.

Потери напора

Потери напора характерны для всех участков и первого, и второго кольца контура. Под этим понятием подразумеваются суммарные потери на трение внутри труб, арматуры и батарей.

Для определения сопротивления системы отопления потребуется знание следующих величин:

  • ν – скорость.
  • ρ – плотность.
  • R –потери напора в трубопроводе.
  • l –длина данного участка трубопровода.
  • Σζ – суммарное сопротивление.

Специфика выбора основной ветви в двухтрубной системе

Исходя из практического опыта проведенных вычислений, при наличии попутного движения теплоносителя в двухтрубной схеме лучше выбрать более нагруженный стояк через нижнюю батарею. В однотрубном контуре речь о кольце через самый загруженный стояк. Если горячая вода имеет тупиковое движение, в двухтрубной системе выбирают кольцо нижнего радиатора наиболее загруженного удаленного стояка.


Однотрубная схема предполагает идентичный подход. В горизонтальном контуре предпочитают кольцо самого загруженного направления нижнего этажа. Подобные работы по гидравлическому расчету двухтрубной системы отопления должны проводиться максимально внимательно, т.к. малейшая погрешность может вылиться в крупные неприятности.

Итоги

Гидравлическое сопротивление системы отопления является очень важной величиной, без которой невозможно организовать эффективный обогрев жилища. Настоятельно рекомендуется провести все требуемые расчеты максимально точно. Если нет уверенности в собственных силах, лучше не рисковать, и пригласить для этого квалифицированного специалиста. В тех же случаях, когда было принято решение реализовать это вычисление самостоятельно, важно не спешить, все делая с учетом рассмотренных примеров.